9B Differentiating Exponentials

 e^{x}

ln(x)

1. Find $\frac{dy}{dx}$ given that:

 $y = e^{3x} + 2^{3x}$

2. Find $\frac{dy}{dx}$ given that:

 $y = ln(x^3) + ln7x$

3. Find $\frac{dy}{dx}$ given that:

$$y = \frac{2 - 3e^{7x}}{4e^{3x}}$$

9C (Part 2) The Chain Rule

1. Given that $y = (3x^4 + x)^5$, find $\frac{dy}{dx}$ using the chain rule.

2. Given that $y = sin^4 x$, find $\frac{dy}{dx}$

3. Given that $y = \sqrt{5x^2 + 1}$, find the gradient of the curve at (4,9).

9D The Product Rule

1. Given that $f(x) = x^2 \sqrt{3x - 1}$, find f'(x).

2. Given that $y = e^{4x} \sin^2 3x$, show that $\frac{dy}{dx} = e^{4x} \sin^3 x (A\cos^3 x + B\sin^3 x)$, where A and B are constants to be found.

9E The Quotient Rule

1. Given that $y = \frac{x}{2x+5}$, find $\frac{dy}{dx}$

2. A curve *C* has equation $y = \frac{sinx}{e^{2x}}$, $0 < x < \pi$.

The curve has a stationary point at P. Find the coordinates of P, to 3 significant figures.

9A Differentiating Sine & Cosine

Small angle notes

Differentiating Sine from First Principles

Differentiating Sin(kx) from First Principles

1. Find
$$\frac{dy}{dx}$$
 given that:
a)

y = sin2x

b)

y = 3sin2x

c)

y = 3cosx + 2sin4x

2. A curve has equation:

$$y = \frac{1}{2}x - \cos 2x$$

Find the stationary points on the curve in the interval $0 \le x \le \pi$.

9F Trigonometric Derivatives

1. Given that y = tanx, find $\frac{dy}{dx}$

2. Given that y = cosecx, find $\frac{dy}{dx}$.

3. Given that y = secx, find $\frac{dy}{dx}$.

4. Given that y = cotx, find $\frac{dy}{dx}$.

5. Differentiate:

y = xtan2x

6. Differentiate:

 $y = tan^4x$

7. Differentiate:

$$y = \frac{cosec2x}{x^2}$$

8. Differentiate:

 $y = sec^3 x$

No Arc derivatives on new Spec

9C (Part 1) dx/dy

1. Find the value of $\frac{dy}{dx}$ at the point (2,1) on the curve with equation $y^3 + y = x$

9G Differentiating Parametric Equations

1. Find the gradient at the point *P* where t = 2, on the curve given parametrically by:

 $x = t^3 + t, \ y = t^2 + 1, \ t \in \mathbb{R}$

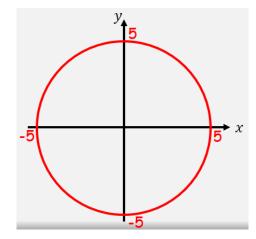
2. Find the equation of the normal at the point *P*, where $\theta = \frac{\pi}{6}$, to the curve with parametric equations $x = 3sin\theta$ and $y = 5cos\theta$.

<u>9H Implicit Differentiation</u>

1. Differentiate the following equation implicitly:

 $y^3 = 3x^2$

2. Below is a sketch of the circle with equation $x^2 + y^2 = 25, -5 \le x \le 5, -5 \le y \le 5$. Find the gradient of the curve where x = 4



3. Find $\frac{dy}{dx}$ in terms of x and y when:

$$x^3 + x + y^3 + 3y = 6$$

4. Given that $4xy^2 + \frac{6x^2}{y} = 10$, find the value of $\frac{dy}{dx}$ at the point (1,1)

5. Find the value of $\frac{dy}{dx}$ at the point (1,1), when:

 $e^{2x}lny = x + y + 2$

91 Concave & Convex Functions

1. Find the interval on which the function $f(x) = x^3 + 4x + 3$ is concave.

2. Show that the function $f(x) = e^{2x} + x^2$ is convex for all real values of x.

- 3. The curve *C* has equation $y = x^3 2x^2 4x + 5$
- a) Show that C is concave on the interval [-2,0] and convex on the interval [1,3]

b) Find the coordinates of the point of inflection

9J Chain Rule in Context

1. Given that the area of a circle $A \ cm^2$ is related to its radius $r \ cm$ by the formula $A = \pi r^2$, and that the rate of change of its radius in $cm \ s^{-1}$ is given by $\frac{dr}{dt} = 5$, find $\frac{dA}{dt}$ when r = 3

2. The volume of a hemisphere $V cm^3$ is related to its radius r cm by the formula $V = \frac{2}{3}\pi r^3$, and the total surface area $S cm^2$ is given by the formula $S = 3\pi r^2$. Given that the rate of increase of volume, in $cm^3 s^{-1}$, $\frac{dV}{dt} = 6$, find the rate of increase of the surface area, $\frac{dS}{dt}$.

3. In the decay of radioactive particles, the rate at which particles decay is proportional to the number of particles remaining. Write down a differential equation for the rate of change of the number of particles.

4. Newton's law of cooling states that the rate of loss of temperature of a body is proportional to the excess temperature of the body compared to its surroundings. Write an equation that expresses this law.

5. The head of a snowman of radius $R \ cm$ loses volume by evaporation at a rate proportional to its surface area. Assuming that the head is spherical, that the volume of a sphere is given by $V = \frac{4}{3}\pi R^3 \ cm^3$ and that the surface area is $A = 4\pi R^2 \ cm^2$, write down a differential equation for the rate of change of radius of the snowman's head.