

Mark Scheme (Results)

Summer 2018

Pearson Edexcel GCE Further Mathematics AS Further Mechanics M1 Paper 8FM0_25

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2018 Publications Code 8FM0_25_1806_MS All the material in this publication is copyright © Pearson Education Ltd 2018

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the last candidate in exactly the same way as they mark the first.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification/indicative content will not be exhaustive.

EDEXCEL GCE MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 40.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
 - **M** marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
 - A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
 - **B** marks are unconditional accuracy marks (independent of M marks)
 - Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- The second mark is dependent on gaining the first mark
- 4. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 5. Where a candidate has made multiple responses <u>and indicates which response</u> <u>they wish to submit</u>, examiners should mark this response. If there are several attempts at a question <u>which have not been crossed out</u>, examiners should mark the final answer which is the answer that is the <u>most complete</u>.
- 6. Ignore wrong working or incorrect statements following a correct answer.
- 7. Mark schemes will firstly show the solution judged to be the most common response expected from candidates. Where appropriate, alternatives answers are provided in the notes. If examiners are not sure if an answer is acceptable, they will check the mark scheme to see if an alternative answer is given for the method used

Qu	Scheme	Marks	AOs	Notes
1 (a)	Speed just before impact: $v^2 = u^2 + 2as = 2 \times 9.8 \times 3.6 (= 70.56)$	M1	3.4	Use the model and <i>suvat</i> or energy to find speed before impact
	$v = 8.4 \text{ (m s}^{-1})$	A1	1.1b	Correct answer. Accept $\sqrt{70.56}$, $\sqrt{7.2g}$
	Use of $I = mv - mu$: $4.2 = 0.3(w - (-8.4))$	M1	3.1b	A complete strategy to find <i>w</i> : Use the model and impulse-momentum equation using given impulse and their speed of impact. Must be using a difference in velocities. Be vigilant for sign fudges that make the original equation incorrect.
	Follow their 8.4	A1ft	1.1b	Correct unsimplified equation using their speed
	$w = 5.6 \text{ (m s}^{-1})$	A1	1.1b	Correct positive answer
		(5)		
1(b)	$\text{KE lost} = \frac{1}{2}m\left(v^2 - w^2\right)$	M1	3.3	Correct method to find the KE lost in the impact. Need to be using speeds immediately before and immediately after impact.
	$=\frac{0.3}{2}(8.4^2-5.6^2)$ Follow their 8.4 and 5.6	Alft	1.1b	Correct expression for their speeds. Accept subtraction either way round
	= 5.88 (J)	A1	1.1b	Correct solution only. Accept 5.9
		(3)		
	·	(8	marks)	

Qu	Scheme	Marks	AOs	Notes
2(a)	Work-energy equation: KE lost = PE gained + Work Done	M1	2.1	A complete method to obtain R . The question requires the use of work-energy. Need to consider all three terms with no duplication. Condone sign error and sin/cos confusion.
	$\frac{1}{2} \times 4 \times 5^2 - 4 \times g \times 2.5 \times \sin \theta = 2.5R$	A1	1.1b	Unsimplified equation with at most one error
	$\frac{1}{2} \times 4 \times 5^2 - 4 \times g \times 2.5 \times \frac{2}{7} = 2.5R$	A1	1.1b	Correct unsimplified
	$2.5R = 22 \implies R = 8.8 *$	A1*	1.1b	Correct answer with sufficient working shown to justify given answer
		(4)		
(b)	Work-energy equation: KE after =initial KE – 2 (Work Done)	M1	3.3	Work-energy equation considering $A \rightarrow A$ or $B \rightarrow A$. Requires all relevant terms with no duplication. Condone sign errors and sin/cos confusion
	$\frac{1}{2} \times 4 \times v^{2} = \frac{1}{2} \times 4 \times 25 - 2 \times 8.8 \times 2.5$	A1	1.1b	Correct unsimplied equation
	$\Rightarrow 2v^2 = 6, v = 1.7 \text{ (m s}^{-1}\text{)}$	A1	1.1b	Accept 1.7 or 1.73 (answer depends on use of g). Not $\sqrt{3}$
		(3)		
(b)	Work-energy equation: KE at $B = PE \text{ lost} - Work \text{ Done}$	M1		
alt	$\frac{1}{2} \times 4 \times v^2 = 4 \times 9.8 \times \frac{2}{7} \times 2.5 - 8.8 \times 2.5$	A1		
	$\Rightarrow 2v^2 = 6, \ v = 1.7 (\mathrm{m \ s^{-1}})$	A1		
		(3)		

(b)	Equation of motion and <i>suvat</i> : $4g\sin\theta - 8.8 = 4a$ ($a = 0.6$)	M1		Complete method to find <i>v</i> or v^2 .
alt	$v^2 = 2 \times a \times 2.5$	A1		Correct unsimplified expression for v or v^2 .
	$v = 1.7 \text{ (m s}^{-1})$	A1		Accept 1.7 or 1.73 (answer depends on use of g)
		(3)		
(c)	A valid improvement	B1	3.5c	it has assumed a constant resistance - have variable resistance -have air resistance proportional to speed
	A second valid, distinct, improvement	B1	3.5c	Do not model the parcel as a particle - so can consider the possibility that the parcel rotates as it moves up/down the slope - consider the dimensions of the parcel
				The comments need to relate to the 2 modelling assumptions in the question. Air resistance and friction are already included in "non-gravitational forces".
		(2)		

Qu	Scheme	Marks	AOs	Notes
3 (a)	Use of $P = Fv$	B1	1.1a	Use of $P = Fv$ seen or implied. Allow in (b) if not seen in (a)
	Equation of motion: $F - \lambda v = 750 \times 0.6$	M1	2.1	Requires all three terms. Must be dimensionally correct. Need not have substituted for <i>F</i> . Condone sign errors. Allow if equation not seen but all steps in working correct. The method needs to show that $\lambda = 50$ is the only solution.
	$\frac{18000}{15} - \lambda \times 15 = 750 \times 0.6$	A1	1.1b	Correct unsimplified equation
	$1200 - 15\lambda = 450 \implies \lambda = 50 *$	A1*	1.1b	Obtain given answer correctly
		(4)		
3(b)	Overall strategy	M1	3.1b	Complete strategy e.g. use the model to form quadratic in V and solve for V
	Equation of motion	M1	3.4	Use the model to form equation of motion. All terms required. Condone sign errors and sin/cos confusion. Need not have substituted for <i>F</i> .
	$\frac{12000}{V} - 50V - 750g\sin\alpha = 0$	A1	1.1b	Substituted equation with at most one error (unsimplified). Allow in F or V .
	$\frac{12000}{V} - 50V - 490 = 0 \Longrightarrow 5V^2 + 49V - 1200 = 0$	A1	1.1b	Correct quadratic equation. e.g. $5V^2 + 49V - 1200 = 0$ or equivalent Allow in <i>F</i> or <i>V</i> .
	$\Rightarrow V\left(=\frac{-49+\sqrt{49^2+20\times1200}}{10}\right)=11.3 \text{ only}$	A1	1.1b	Accept 11 or 11.3 (follows use of 9.8) Negative root should be rejected if seen
		(5)		
	(9 marks)			

Qu	Scheme	Marks	AOs	Notes
4(a)	Complete strategy to find speed of Q	M1	3.1b	Complete strategy e.g. use of CLM, impact law and solution of simultaneous equations.
	$2u \xrightarrow{P} \qquad \qquad$			
	Use of CLM	M1	3.1a	CLM equation. Requires all terms and dimensionally correct. Condone sign errors.
	6mu - 5mu (= mu) = 3mv + 5mw	A1	1.1b	Correct unsimplified equation
	Use of impact law	M1	3.1a	Impact law. Condone sign error. Must be used the right way round.
	w - v = 3ue	A1	1.1b	Correct unsimplified equation Signs consistent with CLM equation.
	$3v+5w = u 3w-3v = 9ue \} \implies 8w = u+9ue , w = \frac{u}{8}(9e+1)^*$	A1*	2.1	Obtain given answer from correct working
		(6)		
4(b)	$v = w - 3ue = \frac{u}{8}(1 - 15e)$ and $v > 0$	M1	3.1b	Find speed of <i>P</i> and form correct inequality consistent with their directions.
	$\Rightarrow (0 \le) e < \frac{1}{15}$	A1	1.1b	Correct solution. Need not mention the lower limit.
		(2)		

4(c)	Complete strategy to find time for Q to get to second collision	M1	3.1a	Complete strategy e.g. find time to wall and back again
	Speed of Q after impact with wall $=\frac{u}{16}$	B1	1.1b	Correct use of impact law
	$ \begin{array}{c} & & d \\ & & & \\ & & & \\ \hline u \\ \hline 48 \end{array} \xrightarrow{P} \\ \hline 3m \end{array} \xrightarrow{Q} \\ \hline & & \\ \hline \hline & & \\ \hline \hline & & \\ \hline \\ \hline$			
	Time for Q: $\frac{16d}{3u} + \frac{16x}{u}$ follow their $\frac{u}{16}$ and $\frac{16d}{3u}$	Alft	1.1b	Correct unsimplified equation using time = $\frac{\text{distance}}{\text{speed}}$ and following their $\frac{u}{16}$ and $\frac{16d}{3u}$
	Complete strategy to find time for <i>P</i> to get to second collision $= \frac{48(d-x)}{u}$	B1ft	1.1b	Correct use of time = $\frac{\text{distance}}{\text{speed}}$ Follow their $\frac{u}{48}$
	Use both at the same place at the same	M1	2.1	find x by putting both particles in the same place at the same time. Must be valid expressions for the times.
	$x = \frac{128d}{192} = \frac{2d}{3}$	A1	1.1b	Correct answer or exact equivalent
		(6)		

4(c) alt	Complete strategy to find position of second collision	M1	3.1a	e.g. by considering distances and relative velocities
	Speed of Q after impact with wall $=\frac{u}{16}$	B1	1.1b	Correct use of impact law
	Distance apart when Q strikes the wall $=\frac{8d}{9}$	B1ft	1.1b	Follow their $\frac{u}{48}$ and $\frac{3u}{16}$
	Gap closing at $\frac{u}{16} + \frac{u}{48}$	A1ft	1.1b	Follow their $\frac{u}{16}$ and $\frac{u}{48}$
	$t = \frac{\frac{8d}{9}}{\frac{u}{16} + \frac{u}{48}} \left(= \frac{32d}{3u} \right)$	M1	2.1	Correct use of time = $\frac{\text{distance}}{\text{speed}}$
	$x = \frac{u}{16} \times \frac{32d}{3u} = \frac{2d}{3}$	A1	1.1b	Correct answer
		(6)		
4(c) alt	Complete strategy to find position of second collision	M1	3.1a	e.g. by considering distances and relative velocities
	Speed of <i>Q</i> after impact with wall $=\frac{u}{16}$	B1	1.1b	Correct use of impact law
	Distance apart when Q strikes the wall $=\frac{8d}{9}$	B1ft	1.1b	Follow their $\frac{u}{48}$ and $\frac{3u}{16}$
	Ratio of speeds: $v_Q : v_P = 3:1$	A1ft	1.1b	Follow their $\frac{u}{16}$ and $\frac{u}{48}$
	Distance travelled by $Q = \frac{3}{4} \times \frac{8d}{9}$	M1	2.1	Correct use of ratio to find <i>x</i>
	$x = \frac{2d}{3}$	A1	1.1b	Correct answer
		(6)		
	(14 marks)			

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R ORL, United Kingdom