Paper 2 Option J

Further Mechanics 1 Mark Scheme (Section A)

Questio	n Scheme	Marks	AOs
1(a)	Using the model and $v^2 = u^2 + 2as$ to find v	M1	3.4
	$v^2 = 2as = 2g \times 2.4 = 4.8g \implies v = \sqrt{(4.8g)}$	A1	1.1b
	Using the model and $v^2 = u^2 + 2as$ to find u	M1	3.4
	$0^2 = u^2 - 2g \times 0.6 \implies u = \sqrt{(1.2g)}$	A1	1.1b
	Using the correct strategy to solve the problem by finding the sep. speed and app. speed and applying NLR	M1	3.1b
	$e = \sqrt{(1.2g)} / \sqrt{(4.8g)} = 0.5 *$	A1*	1.1b
		(6)	
(b)	Using the model and $e = \text{sep. speed} / \text{app. speed}$, $v = 0.5\sqrt{(1.2g)}$	M1	3.4
	Using the model and $v^2 = u^2 + 2as$	M1	3.4
	$0^2 = 0.25 (1.2g) - 2gh \implies h = 0.15 (m)$	A1	1.1b
		(3)	
(c)	Ball continues to bounce with the height of each bounce being a quarter of the previous one	B1	2.2b
		(1)	
		(10 m	arks)
Notes:			
(a) M1: F A1: F M1: F A1: F M1: F A1*: F	For a complete method to find v for a correct value (may be numerical) for a complete method to find u for a correct value (may be numerical) for finding both v and u and use of Newton's Law of Restitution for the given answer		
(b) M1: F M1: F A1: F	for use of Newton's Law of Restitution to find rebound speed for a complete method to find h for 0.15 (m) oe		
(c) B1: Fe	or a clear description including reference to a quarter		

Quest	ion	Scheme	Marks	AOs
2(a) Energ	gy Loss = KE Loss – PE Gain	M1	3.3
		$=\frac{1}{2} \times 0.5 \times 25^2 - 0.5 \ g \times 20$	A1	1.1b
		= 58.25 = 58 (J) or 58.3 (J)	A1	1.1b
			(3)	
(b)	Usin	g work-energy principle, $20 R = 58.25$	M1	3.3
	R=2	2.9125 = 2.9 or 2.91	A1ft	1.1b
			(2)	
(c)	Make	e resistance variable (dependent on speed)	B1	3.5c
			(1)	
			(6 n	narks)
Notes				
(a) M1:	For a differ	rence in KE and PE		
A1:	For a correct expression			
A1:	For either 58 (2sf) or 58.3(3sf)			
(b) M1: A1ft:	 (b) M1: For use of work-energy principle A1ft: For either 2.9 (2sf) or 2.91 (3sf) follow through on their answer to (a) 			
(c) B1:	For variable resistance oe			

Question	Scheme	Marks	AOs
3 (a)	Force = Resistance (since no acceleration) = 30	B1	3.1b
	Power = Force \times Speed = 30 \times 4	M1	1.1b
	= 120 W	A1 ft	1.1b
		(3)	
(b)	Resolving parallel to the slope	M1	3.1b
	$F - 60g\sin\alpha - 30 = 0$	A1	1.1b
	F = 70	A1	1.1b
	Power = Force \times Speed = 70 \times 3	M1	1.1b
	$= 210 \mathrm{W}$	A1 ft	1.1b
		(5)	
	(8 marks		narks)
Notes:			
(a)			
B1: For	For force $= 30$ seen		
MI: For	For use of $P = Fv$ For 120 (W) follow through on their '20'		
(D) M1: For	resolving parallel to the slope with correct no. of terms and 60g resolve	ed	
A1: For	For a correct equation		
A1: For	F = 70		
M1: For	For use of $P = Fv$		
Notes: (a) B1: For M1: For A1ft: For (b) M1: For A1: For	force = 30 seen use of $P = Fv$ 120 (W), follow through on their '30' resolving parallel to the slope with correct no. of terms and 60g resolve a correct equation F = 70 use of $P = Fv$ 210 (W), follow through on their '70'	(8 n	nar

Quest	on Scheme	Marks	AOs
4(a)	Use of conservation of momentum	M1	3.1a
	3mu - 2mu = 3mv + mw	A1	1.1b
	Use of NLR	M1	3.1a
	3ue = -v + w	A1	1.1b
	Using a correct strategy to solve the problem by setting up two equations (need both) in u and v and solving for v	M1	3.1b
	$v = \frac{u}{4}(1 - 3e)$	A1	1.1b
		(6)	
(b)	$\frac{u}{4}(1 - 3e) < 0$	M1	3.1b
	$\frac{1}{3} < e \le 1$	A1	1.1b
		(2)	
(c)	Solving for <i>w</i>	M1	2.1
	$w = \frac{u}{4} (1 + 9e) *$	A1 *	1.1b
		(2)	
(d)	Substitute $e = \frac{5}{9}$	M1	1.1b
	$v = -\frac{u}{6}, w = \frac{3u}{2}$	A1	1.1b
	Use NLR for impact with wall, $x = fw$	M1	1.1b
	Further collision if $x > -v$	M1	3.4
	$f\frac{3u}{2} > \frac{u}{6}$	A1	1.1b
	$1 \ge f > \frac{1}{9}$	A1	1.1b
		(6)	
		(16 n	narks)
Notes:			
(a) M1.	For use of CLM with correct no. of terms, condens sign errors		
A1:	For a correct equation		
M1:	For use of Newton's Law of Restitution, with <i>e</i> on the correct side		
A1:	For a correct equation		
M1:	For setting up <i>two</i> equations and solving their equations for v For a correct expression for v		
(b)			
M1:	For use of an appropriate inequality		
(c)	roi a complete failge of values of e		
M1:	For solving their equations for w		
	For the given answer		

Question 4 notes continued:

(d)

M1: For substituting $e = \frac{5}{9}$ into their v and w

A1: For correct expressions for *v* and *w*

M1: For use of Newton's Law of Restitution, with *e* on the correct side

M1: For use of appropriate inequality

A1: For a correct inequality

A1: For a correct range

Questi	on Scheme	Marks	AOs
5 (a)	Multiply out and differentiate wrt <i>t</i>	M1	1.1b
	$v = 3t^2 - 16t + 20 \Longrightarrow a = 6t - 16$	A1	1.1b
		(2)	
(b)	Multiply out and integrate wrt <i>t</i>	M1	1.1b
	$s = \int 3t^2 - 16t + 20dt = t^3 - 8t^2 + 20t(+C)$	A1	1.1b
	$t = 0, s = 0 \implies C = 0$		
	t = 2, s = 8 - 32 + 40 = 16	AI	1.1b
		(3)	
	$s = 0 \Longrightarrow t^3 - 8t^2 + 20t = 0$ and $t \neq 0 \Longrightarrow t^2 - 8t + 20 = 0$	M1	2.1
(c)	Explanation to show that $t^2 - 8t + 20 > 0$ for all <i>t</i> .	M1	2.4
	So $s = 0$ has no non-zero solutions, so s is never zero again, so never returns to O *	A1*	3.2a
		(3)	
(8 mark		narks)	
Notes:			
(a) M1. 1	For multiplying out and differentiating (newers decreasing by 1)		
A1:	For a correct expression for a		
(b)			
M1:	For multiplying out and integrating (powers increasing by 1)		
A1:	For a correct expression for s with or without C		
A1:]	For $C = 0$ and correct final answer		
(c)			
	For equating their s to 0 and producing a quadratic		.1
	For clear explanation that $t^2 - 8t + 20 > 0$ for all t (e.g. completing the squ	are or anot	tner
A1*:	For a correct conclusion in context		

Further Mechanics 2 Mark Scheme (Section B)

1.1b
1 1h
1.10
3.1b
1.1b
3.1b
1.1b
1.1b
2.1
1.1b
1.1b
2.1
2.1
2.2a
1.1b
1.1b
3.5b
marks)

Question 6 notes continued: (b) M1: For use of $T_1 < 4mg$ M1: For using $T_2 > 0$ A1: For a correct inequality (either) for ω

M1: For use of $S = \frac{2\pi}{\omega}$ with either critical value

A1*: For given answer

(c)

390

B1: For a clear explanation

Quest	ion Scheme	Marks	AOs
7(a)	Rel. Mass: 2 5 1 8	B1	1.2
	$y: \qquad 2 \qquad 0.5 1.5 \overline{y}$	B1	1.2
	$x: 0.5 2.5 4.5 \overline{x}$	B1	1.2
	$(2 \times 2) + (5 \times 0.5) + (1 \times 1.5) = 8 \overline{y}$	M1	2.1
	$\overline{y} = 1 *$	A1*	1.1b
	$(2 \times 0.5) + (5 \times 2.5) + (1 \times 4.5) = 8\overline{x}$	M1	2.1
	$\overline{x} = 2.25$	A1	1.1b
		(7)	
(b)	Use of correct strategy to solve the problem by use of 'moments equation'	M1	3.1b
	$(8 \times 2.25) - (2\pi r^2 \times 0.5) = (8 - 2\pi r^2)2.5$	A1ft	1.1b
	Solving for r	M1	1.1b
	$r = \frac{1}{\sqrt{2\pi}} = 0.399$	A1	1.1b
		(4)	
(c)	Since \overline{y} for original plate is 1, holes must be symmetrically placed about the line $y = 1$	B1	2.4
	<i>a</i> = 1.5	B1	2.2a
		(2)	
(d)	Use of tan from an appropriate triangle	M1	1.1a
	$\tan\alpha = \frac{2}{1.5} = \frac{4}{3}$	A1ft	1.1b
	$\alpha = 53.1^{\circ}$	A1	1.1b
		(3)	
		(16 n	narks)
Notes:			
B1:	For correct relative masses		
B1:	For correct <i>y</i> values		
M1:	For a moments equation, correct no. of terms, condone sign errors		
A1*:	For a correct given answer (1)		
M1:	For a moments equation, correct no. of terms		
AI: (b)	For 2.25		
M1:	For a moments equation, correct no. of terms, condone sign errors		
A1ft:	For a correct equation, follow through on their \overline{x}		
M1:	For solving for <i>r</i>		
A1:	For 0.399 or 0.40		

Quest	Question 7 notes continued:		
(c)			
B1:	For consideration of symmetry about $y = 1$		
B1:	For $a = 1.5$		
(d)			
M1:	For use of tan from an appropriate triangle		
A1ft:	For a correct equation, follow through on their <i>a</i>		
A1:	For a correct angle		